Showing 1 - 9 of 9
Stochastic Volatility (SV) models are widely used in financial applications. To decide whether standard parametric restrictions are justified for a given dataset, a statistical test is required. In this paper, we develop such a test based on the linear state space representation. We provide a...
Persistent link: https://www.econbiz.de/10009578026
Persistent link: https://www.econbiz.de/10009578563
Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure...
Persistent link: https://www.econbiz.de/10009579184
One puzzling behavior of asset returns for various frequencies is the often observed positive autocorrelation at lag 1. To some extent this can be explained by standard asset pricing models when assuming time varying risk premia. However, one often finds better results when directly fitting an...
Persistent link: https://www.econbiz.de/10009579187
In this paper we introduce a bootstrap procedure to test parameter restrictions in vector autoregressive models which is robust in cases of conditionally heteroskedastic error terms. The adopted wild bootstrap method does not require any parametric specification of the volatility process and...
Persistent link: https://www.econbiz.de/10009663846
Multivariate Volatility Models belong to the class of nonlinear models for financial data. Here we want to focus on multivariate GARCH models. These models assume that the variance of the innovation distribution follows a time dependent process conditional on information which is generated by...
Persistent link: https://www.econbiz.de/10009615423
Persistent link: https://www.econbiz.de/10009611560
A new kind of mixture autoregressive model with GARCH errors is introduced and applied to the U.S. short-term interest rate. According to the diagnostic tests developed in the paper and further informal checks the model is capable of capturing both of the typical characteristics of the...
Persistent link: https://www.econbiz.de/10009612047
The analysis of diffusion processes in financial models is crucially dependent on the form of the drift and diffusion coefficient functions. A methodology is proposed for estimating and testing coefficient functions for ergodic diffusions that are not directly observable. It is based on...
Persistent link: https://www.econbiz.de/10009613611