Showing 1 - 10 of 303
We consider an additive model with second order interaction terms. It is shown how the components of this model can be estimated using marginal integration, and the asymptotic distribution of the estimators is derived. Moreover, two test statistics for testing the presence of interactions are...
Persistent link: https://www.econbiz.de/10009574875
Persistent link: https://www.econbiz.de/10001916755
Persistent link: https://www.econbiz.de/10001919491
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing … polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection …
Persistent link: https://www.econbiz.de/10009657131
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator and an empirical likelihood based one for the mean of the response variable are defined. Both the estimators are proved to be asymptotically normal, with...
Persistent link: https://www.econbiz.de/10009620774
In this work, we introduce a smoothed influence function that constitute a theoretical tool for studying the outliers robustness properties of a large class of nonparametric estimators. With this tool, we first show the nonrobustness of the Nadaraya-Watson estimator of regression. Then we show...
Persistent link: https://www.econbiz.de/10009626684
Additive modelling has been widely used in nonparametric regression to circumvent the "curse of dimensionality", by reducing the problem of estimating a multivariate regression function to the estimation of its univariate components. Estimation of these univariate functions, however, can suffer...
Persistent link: https://www.econbiz.de/10009626746
Additive modelling is known to be useful for multivariate nonparametric regression as it reduces the complexity of problem to the level of univariate regression. This usefulness could be compromised if the data set was contaminated by outliers whose detection and removal are particularly...
Persistent link: https://www.econbiz.de/10009627283
Chaudhuri, Doksum and Samarov (1997) have recently stressed the usefulness of the quantile regression formulation for survival analysis and for transformation models, more generally. In this paper, we explore the use of quantile regression in survival analysis by reanalysing a large experimental...
Persistent link: https://www.econbiz.de/10009580464
Applying nonparametric variable selection criteria in nonlinear regression models generally requires a substantial computational effort if the data set is large. In this paper we present a selection technique that is computationally much less demanding and performs well in comparison with...
Persistent link: https://www.econbiz.de/10009580488