Showing 1 - 10 of 156
Carlo methods. The effects of several model characteristics (unit roots, GARCH, stochastic volatility, heavy tailed …
Persistent link: https://www.econbiz.de/10005137117
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these...
Persistent link: https://www.econbiz.de/10008838591
When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on … stochastic volatility. Estimation of the model delivers measures of daily variation outperforming their non …
Persistent link: https://www.econbiz.de/10005450762
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10004964452
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10005504906
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10008838540
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10008838590
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-<I>t</I> innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...</i>
Persistent link: https://www.econbiz.de/10008838647
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. By combining existing numerical and Monte Carlo integration methods, we obtain a general and efficient likelihood evaluation method for this class of models. Our approach is based on the idea that only...
Persistent link: https://www.econbiz.de/10008873337
Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. We focus on the situation where one makes use of importance sampling or the independence chain...
Persistent link: https://www.econbiz.de/10005016276