Showing 1 - 5 of 5
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10011272593
to realized volatilities of the S&P 500 stock index and three exchange rates produces forecasts that clearly improve upon …
Persistent link: https://www.econbiz.de/10011257135
A key application of long memory time series models concerns inflation. Long memory implies that shocks have a long-lasting effect. It may however be that empirical evidence for long memory is caused by neglecting one or more level shifts. Since such level shifts are not unlikely for inflation,...
Persistent link: https://www.econbiz.de/10011257369
There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous timefractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of the FIWSV...
Persistent link: https://www.econbiz.de/10011257492
This paper develops a novel approach to modeling and forecasting realized volatility (RV) measures based on copula functions. Copula-based time series models can capture relevant characteristics of volatility such as nonlinear dynamics and long-memory type behavior in a flexible yet parsimonious...
Persistent link: https://www.econbiz.de/10011257654