Showing 1 - 10 of 11
We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The mixed normal distribution can approximate many continuous error distributions accurately. We...
Persistent link: https://www.econbiz.de/10012795401
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time- varying with an...
Persistent link: https://www.econbiz.de/10011688512
We argue that existing methods for the treatment of missing observations in observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and...
Persistent link: https://www.econbiz.de/10011794421
We revisit Wintenberger (2013) on the continuous invertibility of the EGARCH(1,1) model. We note that the definition of continuous invertibility adopted in Wintenberger (2013) may not always be sufficient to deliver strong consistency of the QMLE. We also take the opportunity to provide other...
Persistent link: https://www.econbiz.de/10011401308
The equivalence of the Beveridge-Nelson decomposition and the trend-cycle decomposition is well established. In this paper we argue that this equivalence is almost immediate when a Gaussian score-driven location model is considered. We also provide a natural extension towards heavy-tailed...
Persistent link: https://www.econbiz.de/10014450610
We introduce a new and general methodology for analyzing vector autoregressive models with time-varying coefficient matrices and conditionally heteroskedastic disturbances. Our proposed method is able to jointly treat a dynamic latent factor model for the autoregressive coefficient matrices and...
Persistent link: https://www.econbiz.de/10012591572
We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for...
Persistent link: https://www.econbiz.de/10011809978
This paper proposes a novel approach to introduce time-variation in structural parameters of DSGE models. Structural parameters are allowed to evolve over time via an observation-driven updating equation. The estimation of the resulting DSGE model can be easily performed by maximum likelihood...
Persistent link: https://www.econbiz.de/10011813395
We consider a general class of observation-driven models with exogenous regressors for double bounded data that are based on the beta distribution. We obtain a stationary and ergodic beta observation-driven process subject to a contraction condition on the stochastic dynamic model equation. We...
Persistent link: https://www.econbiz.de/10012161059
We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a...
Persistent link: https://www.econbiz.de/10014380737