Showing 1 - 10 of 112
Persistent link: https://www.econbiz.de/10010500991
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider...
Persistent link: https://www.econbiz.de/10011374403
Unobserved components time series models decompose a time series into a trend, a season, a cycle, an irregular disturbance, and possibly other components. These models have been successfully applied to many economic time series. The standard assumption of a linear model, often appropriate after...
Persistent link: https://www.econbiz.de/10011374413
We consider the problem of smoothing data on two-dimensional grids with holes or gaps. Such grids are often referred to as difficult regions. Since the data is not observed on these locations, the gap is not part of the domain. We cannot apply standard smoothing methods since they smooth over...
Persistent link: https://www.econbiz.de/10011377377
Many seasonal macroeconomic time series are subject to changes in their means and variances over a long time horizon. In this paper we propose a general treatment for the modelling of time-varying features in economic time series. We show that time series models with mean and variance functions...
Persistent link: https://www.econbiz.de/10011379641
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal...
Persistent link: https://www.econbiz.de/10011379642
In this paper we study what professional forecasters actually explain. We use spectral analysis and state space modeling to decompose economic time series into a trend, a business-cycle, and an irregular component. To examine which components are captured by professional forecasters we regress...
Persistent link: https://www.econbiz.de/10011305773
We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the...
Persistent link: https://www.econbiz.de/10011342560
To gain insights in the current status of the economy, macroeconomic time series are often decomposed into trend, cycle and irregular components. This can be done by nonparametric band-pass filtering methods in the frequency domain or by model-based decompositions based on autoregressive moving...
Persistent link: https://www.econbiz.de/10011346480