Showing 1 - 10 of 10
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
In this paper we present an exact maximum likelihood treatment forthe estimation of a Stochastic Volatility in Mean(SVM) model based on Monte Carlo simulation methods. The SVM modelincorporates the unobserved volatility as anexplanatory variable in the mean equation. The same extension...
Persistent link: https://www.econbiz.de/10011303314
The increasing availability of financial market data at intraday frequencies has not only led to the development of improved volatility measurements but has also inspired research into their potential value as an information source for volatility forecasting. In this paper we explore the...
Persistent link: https://www.econbiz.de/10011334848
Persistent link: https://www.econbiz.de/10009720703
We propose a novel multivariate GARCH model that incorporates realized measures for the variance matrix of returns. The key novelty is the joint formulation of a multivariate dynamic model for outer-products of returns, realized variances and realized covariances. The updating of the variance...
Persistent link: https://www.econbiz.de/10011520881
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011386468
Persistent link: https://www.econbiz.de/10001472890
We propose a multiplicative dynamic factor structure for the conditional modelling of the variances of an N-dimensional vector of financial returns. We identify common and idiosyncratic conditional volatility factors. The econometric framework is based on an observation-driven time series model...
Persistent link: https://www.econbiz.de/10012591559
Persistent link: https://www.econbiz.de/10011995731
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891