Showing 1 - 10 of 19
Accurate prediction of the frequency of extreme events is of primary importance in many financialapplications such as Value-at-Risk (VaR) analysis. We propose a semi-parametric method for VaRevaluation. The largest risks are modelled parametrically, while smaller risks are captured by the...
Persistent link: https://www.econbiz.de/10010533206
Persistent link: https://www.econbiz.de/10001377688
Persistent link: https://www.econbiz.de/10001413478
Persistent link: https://www.econbiz.de/10001659915
Persistent link: https://www.econbiz.de/10001472890
Persistent link: https://www.econbiz.de/10010191407
Multivariate Volatility Models belong to the class of nonlinear models for financial data. Here we want to focus on multivariate GARCH models. These models assume that the variance of the innovation distribution follows a time dependent process conditional on information which is generated by...
Persistent link: https://www.econbiz.de/10009615423
Persistent link: https://www.econbiz.de/10009720703
In this paper we introduce a bootstrap procedure to test parameter restrictions in vector autoregressive models which is robust in cases of conditionally heteroskedastic error terms. The adopted wild bootstrap method does not require any parametric specification of the volatility process and...
Persistent link: https://www.econbiz.de/10009663846
One puzzling behavior of asset returns for various frequencies is the often observed positive autocorrelation at lag 1. To some extent this can be explained by standard asset pricing models when assuming time varying risk premia. However, one often finds better results when directly fitting an...
Persistent link: https://www.econbiz.de/10009579187