Showing 1 - 10 of 26
Vector autoregressions combined with Minnesota-type priors are widely used for macroeconomic forecasting. The fact that strong but sensible priors can substantially improve forecast performance implies VAR forecasts are sensitive to prior hyperparameters. But the nature of this sensitivity is...
Persistent link: https://www.econbiz.de/10012917924
[enter Abstract BThe marginal likelihood is the gold standard for Bayesian model comparison although it is well-known that the value of marginal likelihood could be sensitive to the choice of prior hyperparameters. Most models require computationally intense simulation-based methods to evaluate...
Persistent link: https://www.econbiz.de/10012867834
Large Bayesian VARs with the natural conjugate prior are now routinely used for forecasting and structural analysis. It has been shown that selecting the prior hyperparameters in a data-driven manner can often substantially improve forecast performance. We propose a computationally efficient...
Persistent link: https://www.econbiz.de/10012867835
We propose a new variational approximation of the joint posterior distribution of the log-volatility in the context of large Bayesian VARs. In contrast to existing approaches that are based on local approximations, the new proposal provides a global approximation that takes into account the...
Persistent link: https://www.econbiz.de/10014351940
Inflation expectations play a key role in determining future economic outcomes. The associated uncertainty provides a direct gauge of how well-anchored the inflation expectations are. We construct a model-based measure of inflation expectations uncertainty by augmenting a standard unobserved...
Persistent link: https://www.econbiz.de/10012945524
Adding multivariate stochastic volatility of a flexible form to large Vector Autoregressions (VARs) involving over a hundred variables has proved challenging due to computational considerations and over-parameterization concerns. The existing literature either works with homoskedastic models or...
Persistent link: https://www.econbiz.de/10012917923
We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial...
Persistent link: https://www.econbiz.de/10012915821
Empirical questions such as whether the Phillips curve or the Okun’s law is stable can often be framed as a model comparison—e.g., comparing a vector autoregression (VAR) in which the coefficients in one equation are constant versus one that has time-varying parameters. We develop Bayesian...
Persistent link: https://www.econbiz.de/10014112982
Financial time series often exhibit properties that depart from the usual assumptions of serial independence and normality. These include volatility clustering, heavy-tailedness and serial dependence. A voluminous literature on different approaches for modeling these empirical regularities has...
Persistent link: https://www.econbiz.de/10013072463
Bayesian vector autoregressions are widely used for macroeconomic forecasting and structural analysis. Until recently, however, most empirical work had considered only small systems with a few variables due to parameter proliferation concern and computational limitations. We first review a...
Persistent link: https://www.econbiz.de/10012892797