Showing 1 - 10 of 101
This paper computes the semiparametric efficiency bound for finite dimensional parameters identified by models of sequential moment restrictions containing unknown functions. Our results extend those of Chamberlain (1992b) and Ai and Chen (2003) for semiparametric conditional moment restriction...
Persistent link: https://www.econbiz.de/10003899088
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (Θ) and unknown functions (h)of endogenous variables. We show that: (1) the penalized sieve minimum distance(PSMD) estimator (ˆΘ, ˆh) can...
Persistent link: https://www.econbiz.de/10003869261
In this paper, we consider semiparametric model averaging of the nonlinear dynamic time series system where the number of exogenous regressors is ultra large and the number of autoregressors is moderately large. In order to accurately forecast the response variable, we propose two semiparametric...
Persistent link: https://www.econbiz.de/10011343005
Individual players in a simultaneous equation binary choice model act differently in different environments in ways that are frequently not captured by observables and a simple additive random error. This paper proposes a random coefficient specification to capture this type of heterogeneity in...
Persistent link: https://www.econbiz.de/10009725714
We examine a kernel regression smoother for time series that takes account of the error correlation structure as proposed by Xiao et al. (2008). We show that this method continues to improve estimation in the case where the regressor is a unit root or near unit root process.
Persistent link: https://www.econbiz.de/10009734305
We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish...
Persistent link: https://www.econbiz.de/10009620324
This paper proposes efficient estimators of risk measures in a semiparametric GARCH model defined through moment constraints. Moment constraints are often used to identify and estimate the mean and variance parameters and are however discarded when estimating error quantiles. In order to prevent...
Persistent link: https://www.econbiz.de/10009620388
We investigate a model in which we connect slowly time varying unconditional long-run volatility with short-run conditional volatility whose representation is given as a semi-strong GARCH (1,1) process with heavy tailed errors. We focus on robust estimation of both long-run and short-run...
Persistent link: https://www.econbiz.de/10009719116
This paper reviews recent developments in nonparametric identi.cation of mea- surement error models and their applications in applied microeconomics, in particular, in empirical industrial organization and labor economics. Measurement error models describe mappings from a latent distribution to...
Persistent link: https://www.econbiz.de/10010469057
This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant distributions and parametric copula functions; where the copulas capture all scale-free temporal dependence and tail dependence of...
Persistent link: https://www.econbiz.de/10003817253