Showing 1 - 5 of 5
We consider nonlinear moment restriction semiparametric models where both the dimension of the parameter vector and the number of restrictions are divergent with sample size and an unknown smooth function is involved. We propose an estimation method based on the sieve generalized method of...
Persistent link: https://www.econbiz.de/10011938037
In this paper, we propose three new predictive models: the multi-step nonparametric predictive regression model and the multi-step additive predictive regression model, in which the predictive variables are locally stationary time series; and the multi-step time-varying coefficient predictive...
Persistent link: https://www.econbiz.de/10011775136
Moment restriction semiparametric models, where both the dimension of parameter and the number of restrictions are divergent and an unknown function is involved, are studied using the generalized method of moments (GMM) and sieve method dealing with the nonparametric parameter. The consistency...
Persistent link: https://www.econbiz.de/10011775182
This paper studies a model with both a parametric global trend and a nonparametric local trend. This model may be of interest in a number of applications in economics, finance, ecology, and geology. The model nests the parametric global trend model considered in Phillips (2007) and Robinson...
Persistent link: https://www.econbiz.de/10011775194
We propose an estimation methodology for a semiparametric quantile factor panel model. We provide tools for inference that are robust to the existence of moments and to the form of weak cross-sectional dependence in the idiosyncratic error term. We apply our method to CRSP daily data.
Persistent link: https://www.econbiz.de/10011775200