Showing 1 - 10 of 100
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10009419329
In many applications of the differences-in-differences (DID) method, the treatment increases more in the treatment group, but some units are also treated in the control group. In such fuzzy designs, a popular estimator of treatment effects is the DID of the outcome divided by the DID of the...
Persistent link: https://www.econbiz.de/10011372663
We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the...
Persistent link: https://www.econbiz.de/10011524832
We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the...
Persistent link: https://www.econbiz.de/10010494997
Standard methods for estimating production functions in the Olley and Pakes (1996) tradition require assumptions on input choices. We introduce a new method that exploits (increasingly available) data on a firm’s expectations of its future output and inputs that allows us to obtain consistent...
Persistent link: https://www.econbiz.de/10014577758
When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating separate weights for each outcome. In this paper, we instead propose estimating a common set of weights across outcomes, by balancing either a vector of all outcomes or an index or...
Persistent link: https://www.econbiz.de/10014445817
The Arellano-Bond estimator is a fundamental method for dynamic panel data models, widely used in practice. However, the estimator is severely biased when the data's time series dimension T is long due to the large degree of overidentification. We show that weak dependence along the panel's time...
Persistent link: https://www.econbiz.de/10014520814
In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the...
Persistent link: https://www.econbiz.de/10003838972
This paper examines identification power of the instrument exogeneity assumption in the treatment effect model. We derive the identification region: The set of potential outcome distributions that are compatible with data and the model restriction. The model restrictions whose identifying power...
Persistent link: https://www.econbiz.de/10003899093
We develop a general class of nonparametric tests for treatment effects conditional on covariates. We consider a wide spectrum of null and alternative hypotheses regarding conditional treatment effects, including (i) the null hypothesis of the conditional stochastic dominance between treatment...
Persistent link: https://www.econbiz.de/10003908572