Showing 1 - 10 of 92
We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound...
Persistent link: https://www.econbiz.de/10010197046
This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear...
Persistent link: https://www.econbiz.de/10003739667
This paper considers the first order large sample properties of the GEL class of estimators for models specified by non-smooth indicators. The GEL class includes a number of estimators recently introduced as alternatives to the efficient GMM estimator which may suffer from substantial biases in...
Persistent link: https://www.econbiz.de/10003739699
This paper develops methodology for nonparametric estimation of a polarization measure due to Anderson (2004) and Anderson, Ge, and Leo (2006) based on kernel estimation techniques. We give the asymptotic distribution theory of our estimator, which in some cases is nonstandard due to a boundary...
Persistent link: https://www.econbiz.de/10003847572
This paper is concerned with developing uniform confidence bands for functions estimated nonparametrically with instrumental variables. We show that a sieve nonparametric instrumental variables estimator is pointwise asymptotically normally distributed. The asymptotic normality result holds in...
Persistent link: https://www.econbiz.de/10003869256
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is...
Persistent link: https://www.econbiz.de/10003869258
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10008859690
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10008906533
Panel data, whose series length T is large but whose cross-section size N need not be, are assumed to have a common time trend. The time trend is of unknown form, the model includes additive, unknown, individual-specific components, and we allow for spatial or other cross-sectional dependence...
Persistent link: https://www.econbiz.de/10008906534
We consider the bias of the 2SLS estimator in the linear instrumental vari-ables regression with one endogenous regressor only. By using asymptotic expansion techniques we approximate 2SLS coefficient estimation bias under various scenarios regarding the number and strength of instruments.The...
Persistent link: https://www.econbiz.de/10003989911