Showing 1 - 10 of 379
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009504597
We examine a kernel regression smoother for time series that takes account of the error correlation structure as proposed by Xiao et al. (2008). We show that this method continues to improve estimation in the case where the regressor is a unit root or near unit root process.
Persistent link: https://www.econbiz.de/10009734305
We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish...
Persistent link: https://www.econbiz.de/10009620324
We investigate a model in which we connect slowly time varying unconditional long-run volatility with short-run conditional volatility whose representation is given as a semi-strong GARCH (1,1) process with heavy tailed errors. We focus on robust estimation of both long-run and short-run...
Persistent link: https://www.econbiz.de/10009719116
Researchers often rely on the t-statistic to make inference on parameters in statistical models. It is common practice to obtain critical values by simulation techniques. This paper proposes a novel numerical method to obtain an approximately similar test. This test rejects the null hypothesis...
Persistent link: https://www.econbiz.de/10011485576
We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)..p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate...
Persistent link: https://www.econbiz.de/10010458629
A two-step estimation method of stochastic volatility models is proposed. In the first step, we nonparametrically estimate the (unobserved) instantaneous volatility process. In the second step, standard estimation methods for fully observed diffusion processes are employed, but with the...
Persistent link: https://www.econbiz.de/10010487528
In this paper, we study nonparametric models allowing for locally stationary regressors and a regression function that changes smoothly over time. These models are a natural extension of time series models with time-varying coefficients. We introduce a kernel-based method to estimate the...
Persistent link: https://www.econbiz.de/10009614397
We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak dependence. A sequence of regressions with many regressors using LASSO...
Persistent link: https://www.econbiz.de/10012003693
The particular concern of this paper is the construction of a confidence region with pointwise asymptotically correct size for the true value of a parameter of interest based on the generalized Anderson-Rubin (GAR) statistic when the moment variance matrix is singular. The large sample behaviour...
Persistent link: https://www.econbiz.de/10011962418