Showing 1 - 10 of 384
Suppose that a target function is monotonic, namely weakly increasing, and an original estimate of this target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show that these estimates can always be improved with...
Persistent link: https://www.econbiz.de/10003739689
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is...
Persistent link: https://www.econbiz.de/10003869258
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is...
Persistent link: https://www.econbiz.de/10009375645
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that...
Persistent link: https://www.econbiz.de/10009668003
We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by...
Persistent link: https://www.econbiz.de/10011815426
We consider a variable selection problem for the prediction of binary outcomes. We study the best subset selection procedure by which the explanatory variables are chosen by maximizing Manski (1975, 1985)'s maximum score type objective function subject to a constraint on the maximal number of...
Persistent link: https://www.econbiz.de/10011775359
This paper is about the ability and means to root-n consistently and efficiently estimate linear, mean-square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as the covariance between two regression...
Persistent link: https://www.econbiz.de/10012595665
Efron's elegant approach to g-modeling for empirical Bayes problems is contrasted with an implementation of the Kiefer-Wolfowitz nonparametric maximum likelihood estimator for mixture models for several examples. The latter approach has the advantage that it is free of tuning parameters and...
Persistent link: https://www.econbiz.de/10011991882
In this paper we consider the problem of inference on a class of sets describing a collection of admissible models as solutions to a single smooth inequality. Classical and recent examples include, among others, the Hansen-Jagannathan (HJ) sets of admissible stochastic discount factors,...
Persistent link: https://www.econbiz.de/10009692023
We consider a Kronecker product structure for large covariance matrices, which has the feature that the number of free parameters increases logarithmically with the dimensions of the matrix. We propose an estimation method of the free parameters based on the log linear property of this...
Persistent link: https://www.econbiz.de/10011471948