Showing 1 - 10 of 56
We propose a framework for estimation and inference about the parameters of an economic model and predictions based on it, when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We derive formulas to...
Persistent link: https://www.econbiz.de/10011912653
When evaluating partial effects, it is important to distinguish between structural endogeneity and measurement errors. In contrast to linear models, these two sources of endogeneity affect partial effects differently in nonlinear models. We study this issue focusing on the Instrumental Variable...
Persistent link: https://www.econbiz.de/10014513475
When evaluating partial effects, it is important to distinguish between structural endogeneity and measurement errors. In contrast to linear models, these two sources of endogeneity affect partial effects differently in nonlinear models. We study this issue focusing on the Instrumental Variable...
Persistent link: https://www.econbiz.de/10014312056
Persistent link: https://www.econbiz.de/10003637484
Persistent link: https://www.econbiz.de/10003582914
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
Multivalued treatment models have only been studied so far under restrictive assumptions: ordered choice, or more recently unordered monotonicity. We show how marginal treatment effects can be identified in a more general class of models. Our results rely on two main assumptions: treatment...
Persistent link: https://www.econbiz.de/10011398344
In many applications of the differences-in-differences (DID) method, the treatment increases more in the treatment group, but some units are also treated in the control group. In such fuzzy designs, a popular estimator of treatment effects is the DID of the outcome divided by the DID of the...
Persistent link: https://www.econbiz.de/10011372663
This paper presents a method of calculating sharp bounds on the average treatment effect using linear programming under identifying assumptions commonly used in the literature. This new method provides a sensitivity analysis of the identifying assumptions and missing data in an application...
Persistent link: https://www.econbiz.de/10011380632
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717