Showing 1 - 10 of 224
We develop a distribution regression model under endogenous sample selection. This model is a semi-parametric generalization of the Heckman selection model. It accommodates much richer effects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and...
Persistent link: https://www.econbiz.de/10014261225
In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the...
Persistent link: https://www.econbiz.de/10003838972
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10008859690
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10008906533
This paper provides new estimates of the medium and long-term impacts of Head Start on the health and behavioral problems of its participants. We identify these impacts using discontinuities in the probability of participation induced by program eligibility rules. Our strategy allows us to...
Persistent link: https://www.econbiz.de/10009486111
In many applications of the differences-in-differences (DID) method, the treatment increases more in the treatment group, but some units are also treated in the control group. In such fuzzy designs, a popular estimator of treatment effects is the DID of the outcome divided by the DID of the...
Persistent link: https://www.econbiz.de/10011372663
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10009419329
We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the...
Persistent link: https://www.econbiz.de/10011524832
We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in Rd given covariates Z=z, taking values in Rk, is a map u -- QY|Z(u,z), which is monotone, in the sense of being a...
Persistent link: https://www.econbiz.de/10010459266
We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the...
Persistent link: https://www.econbiz.de/10010494997