Showing 1 - 2 of 2
A common problem in out-of-sample prediction is that there are potentially many relevant predictors that individually have only weak explanatory power. We propose bootstrap aggregation of pre-test predictors (or bagging for short) as a means of constructing forecasts from multiple regression...
Persistent link: https://www.econbiz.de/10005124019
It is standard in applied work to select forecasting models by ranking candidate models by their prediction mean squared error (PMSE) in simulated out-of-sample (SOOS) forecasts. Alternatively, forecast models may be selected using information criteria (IC). We compare the asymptotic and...
Persistent link: https://www.econbiz.de/10005504404