Showing 1 - 10 of 505
We propose two novel methods to "bring ABMs to the data". First, we put forward a new Bayesian procedure to estimate the numerical values of ABM parameters that takes into account the time structure of simulated and observed time series. Second, we propose a method to forecast aggregate time...
Persistent link: https://www.econbiz.de/10012860573
This paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if...
Persistent link: https://www.econbiz.de/10010276165
This paper is concerned with problem of variable selection and forecasting in the presence of parameter instability. There are a number of approaches proposed for forecasting in the presence of breaks, including the use of rolling windows or exponential down-weighting. However, these studies...
Persistent link: https://www.econbiz.de/10012825993
We develop novel forecasting methods for panel data with heterogeneous parameters and examine them together with existing approaches. We conduct a systematic comparison of their predictive accuracy in settings with different cross-sectional (N) and time (T) dimensions and varying degrees of...
Persistent link: https://www.econbiz.de/10013292495
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a...
Persistent link: https://www.econbiz.de/10010276281
We develop a non-linear forecast combination rule based on copulas that incorporate the dynamic interaction between individual predictors. This approach is optimal in the sense that the resulting combined forecast produces the highest discriminatory power as measured by the receiver operating...
Persistent link: https://www.econbiz.de/10010480821
We propose two novel methods to “bring ABMs to the data”. First, we put forward a new Bayesian procedure to estimate the numerical values of ABM parameters that takes into account the time structure of simulated and observed time series. Second, we propose a method to forecast aggregate time...
Persistent link: https://www.econbiz.de/10012141095
This paper proposes a new method of forecasting euro area quarterly real GDP that uses area-wide indicators, which are derived by optimally pooling the information contained in national indicator series. Following the ideas of predictive modeling, we construct the area-wide indicators by...
Persistent link: https://www.econbiz.de/10010264416
We develop a regime switching vector autoregression where artificial neural networks drive time variation in the coefficients of the conditional mean of the endogenous variables and the variance covariance matrix of the disturbances. The model is equipped with a stability constraint to ensure...
Persistent link: https://www.econbiz.de/10013314694
more generally. Using a novel dataset that provides information on spatial variation in Plague mortality at the city level … population returns to high-mortality locations endowed with more rural and urban fixed factors of production. Land suitability …
Persistent link: https://www.econbiz.de/10012891571