Showing 1 - 10 of 2,027
We propose two novel methods to "bring ABMs to the data". First, we put forward a new Bayesian procedure to estimate the numerical values of ABM parameters that takes into account the time structure of simulated and observed time series. Second, we propose a method to forecast aggregate time...
Persistent link: https://www.econbiz.de/10012860573
This paper assesses time variation in monetary policy rules by applying a Time-Varying Parameter Generalised Methods of Moments (TVP-GMM) framework. Using monthly data until December 2022 for five inflation targeting countries (the UK, Canada, Australia, New Zealand, Sweden) and five countries...
Persistent link: https://www.econbiz.de/10014348141
Bayesian updating is the dominant theory of learning. However, the theory is silent about how individuals react to …
Persistent link: https://www.econbiz.de/10013227484
This paper considers the estimation problem of structural models for which empirical restrictions are characterized by a fixed point constraint, such as structural dynamic discrete choice models or models of dynamic games. We analyze the conditions under which the nested pseudo-likelihood (NPL)...
Persistent link: https://www.econbiz.de/10010264523
In spatial econometrics literature estimation and inference are carried out assuming that the matrix of spatial or network connections has uniformly bounded absolute column sums in the number of units, n, in the network. This paper relaxes this restriction and allows for one or more units to...
Persistent link: https://www.econbiz.de/10012849715
Employing an endogenous growth model with human capital, this paper explores how productivity shocks in the goods and human capital producing sectors contribute to explaining aggregate fluctuations in output, consumption, investment and hours. Given the importance of accounting for both the...
Persistent link: https://www.econbiz.de/10013120659
We propose two novel methods to “bring ABMs to the data”. First, we put forward a new Bayesian procedure to estimate the numerical values of ABM parameters that takes into account the time structure of simulated and observed time series. Second, we propose a method to forecast aggregate time...
Persistent link: https://www.econbiz.de/10012141095
This paper presents a generalized moments (GM) approach to estimating an R-th order spatial regressive process in a panel data error component model. We derive moment conditions to estimate the parameters of the higher order spatial regressive process and the optimal weighting matrix required to...
Persistent link: https://www.econbiz.de/10010264361
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10010264566
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that...
Persistent link: https://www.econbiz.de/10010283629