Showing 1 - 10 of 107
We develop a non-linear forecast combination rule based on copulas that incorporate the dynamic interaction between individual predictors. This approach is optimal in the sense that the resulting combined forecast produces the highest discriminatory power as measured by the receiver operating...
Persistent link: https://www.econbiz.de/10011155375
This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing...
Persistent link: https://www.econbiz.de/10010605168
Persistent link: https://www.econbiz.de/10010605090
Likelihood based estimation of the parameters of state space models can be carried out via a particle filter.  In this paper we show how to make valid inference on such parameters when the model is incorrect.  In particular we develop a simulation strategy for computing sandwich covariance...
Persistent link: https://www.econbiz.de/10011004407
This paper asks how well a general equilibrium agency cost model describes the dynamic relationship between credit variables and the business cycle. A Bayesian VAR is used to obtain probability intervals for empirical correlations. The agency cost model is found to predict the leading,...
Persistent link: https://www.econbiz.de/10010820335
GARCH models are commonly used as latent processes in econometrics, financial economics and macroeconomics. Yet no exact likelihood analysis of these models has been provided so far. In this paper we outline the issues and suggest a Markov chain Monte Carlo algorithm which allows the calculation...
Persistent link: https://www.econbiz.de/10010820306
Kim, Shephard, and Chib (1998) provided a Bayesian analysis of stochastic volatility models based on a fast and reliable Markov chain Monte Carlo (MCMC) algorithm. Their method rules out the leverage effect, which is known to be important in applications. Despite this, their basic method has...
Persistent link: https://www.econbiz.de/10010661335
This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be non-stationary. Although our...
Persistent link: https://www.econbiz.de/10010661411
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010605072
This paper is concerned with Markov chain Monte Carlo based Bayesian inference in generalized models of stochastic volatility defined by heavy-tailed student-t distributions (with unknown degrees of freedom) and covariate effects in the observation and volatility equations. A simple, fast and...
Persistent link: https://www.econbiz.de/10010605094