Showing 1 - 10 of 711
Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called...
Persistent link: https://www.econbiz.de/10010238359
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10003973622
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10009412716
We present two methods based on functional principal component analysis (FPCA) for the estimation of smooth derivatives of a sample of random functions, which are observed in a more than one-dimensional domain.We apply eigenvalue decomposition to a) the dual covariance matrix of the derivatives,...
Persistent link: https://www.econbiz.de/10011530075
This paper is concerned with developing uniform confidence bands for functions estimated nonparametrically with instrumental variables. We show that a sieve nonparametric instrumental variables estimator is pointwise asymptotically normally mental variables estimator is pointwise asymptotically...
Persistent link: https://www.econbiz.de/10010292807
The generalized method of moments estimator may be substantially biased in finite samples, especially so when there are large numbers of unconditional moment conditions. This paper develops a class of first order equivalent semi-parametric efficient estimators and tests for conditional moment...
Persistent link: https://www.econbiz.de/10010318448
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10010318461
Consider an observed binary regressor D and an unobserved binary variable D*, both of which affect some other variable Y . This paper considers nonparametric identification and estimation of the effect of D on Y , conditioning on D* = 0. For example, suppose Y is a person's wage, the unobserved...
Persistent link: https://www.econbiz.de/10010318502
This paper develops IV estimators for unconditional quantile treatment effects (QTE) when the treatment selection is endogenous. In contrast to conditional QTE, i.e. the effects conditional on a large number of covariates X, the unconditional QTE summarize the effects of a treatment for the...
Persistent link: https://www.econbiz.de/10010318521