Showing 1 - 10 of 121
One important goal of this study is to develop a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first...
Persistent link: https://www.econbiz.de/10003790570
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10003792846
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10003808637
Persistent link: https://www.econbiz.de/10003711864
This paper proposes the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that allows for a multifactor error structure. This is an important extension since it retains the advantages of...
Persistent link: https://www.econbiz.de/10010358963
Measurement error causes a downward bias when estimating a panel data linear regression model. The panel data context offers various opportunities to derive moment conditions that result in consistent GMM estimators. We consider three sources of moment conditions: (i) restrictions on the...
Persistent link: https://www.econbiz.de/10010472669
The performance in finite samples is examined of inference obtained by variants of the Arellano-Bond and the Blundell-Bond GMM estimation techniques for single dynamic panel data models with possibly endogenous regressors and cross-sectional heteroskedasticity. By simulation the effects are...
Persistent link: https://www.econbiz.de/10010476668
The paper introduces the appropriate within estimators for the most frequently used three-dimensional fixed effects panel data models. It analyzes the behavior of these estimators in the cases of no self-flow data, unbalanced data, and dynamic autoregressive models. The main results are then...
Persistent link: https://www.econbiz.de/10010492323
While coping with nonsphericality of the disturbances, standard GMM suffers from a blind spot for exploiting the most effective instruments when these are obtained directly from unconditional rather than conditional moment assumptions. For instance, standard GMM counteracts that exogenous...
Persistent link: https://www.econbiz.de/10010438000
This paper generalizes the approach to estimating a first-order spatial autoregressive model with spatial autoregressive disturbances (SARAR(1,1)) in a cross-section with heteroskedastic innovations by Kelejian and Prucha (2008) to the case of spatial autoregressive models with spatial...
Persistent link: https://www.econbiz.de/10003748246