Showing 1 - 10 of 3,739
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10003808637
This paper proposes the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that allows for a multifactor error structure. This is an important extension since it retains the advantages of...
Persistent link: https://www.econbiz.de/10010358963
The performance in finite samples is examined of inference obtained by variants of the Arellano-Bond and the Blundell-Bond GMM estimation techniques for single dynamic panel data models with possibly endogenous regressors and cross-sectional heteroskedasticity. By simulation the effects are...
Persistent link: https://www.econbiz.de/10010476668
While coping with nonsphericality of the disturbances, standard GMM suffers from a blind spot for exploiting the most effective instruments when these are obtained directly from unconditional rather than conditional moment assumptions. For instance, standard GMM counteracts that exogenous...
Persistent link: https://www.econbiz.de/10010438000
Estimation and inference in the spatial econometrics literature are carried out assuming that the matrix of spatial or network connections has uniformly bounded absolute column sums in the number of cross-section units, n. In this paper, we consider spatial models where this restriction is...
Persistent link: https://www.econbiz.de/10011987935
This paper contributes to the GMM literature by introducing the idea of self-instrumenting target variables instead of searching for instruments that are uncorrelated with the errors, in cases where the correlation between the target variables and the errors can be derived. The advantage of the...
Persistent link: https://www.econbiz.de/10011735967
We propose a Generalized Poisson-Pseudo Maximum Likelihood (G-PPML) estimator that relaxes the PPML estimator's assumption that the dependent variable's conditional variance is proportional to its conditional mean. Instead, we employ an iterated Generalized Method of Moments (iGMM) to estimate...
Persistent link: https://www.econbiz.de/10013472407
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that...
Persistent link: https://www.econbiz.de/10009570680
This paper considers the estimation problem of structural models for which empirical restrictions are characterized by a fixed point constraint, such as structural dynamic discrete choice models or models of dynamic games. We analyze the conditions under which the nested pseudo-likelihood (NPL)...
Persistent link: https://www.econbiz.de/10003805996
The paper explores the effect of measurement errors on the estimation of a linear panel data model. The conventional fixed effects estimator, which ignores measurement errors, is biased. By correcting for the bias one can construct consistent and asymptotically normal estimators. In addition, we...
Persistent link: https://www.econbiz.de/10003824983