Showing 1 - 10 of 299
Applied work often studies the effect of a binary variable (“treatment”) using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012223869
Autoregressive models are used routinely in forecasting and often lead to better performance than more complicated models. However, empirical evidence is also suggesting that the autoregressive representations of many macroeconomic and financial time series are likely to be subject to structural...
Persistent link: https://www.econbiz.de/10011508088
We propose autocorrelation-robust asymptotic variances of the Brier score and Brier skill score, which are generally …
Persistent link: https://www.econbiz.de/10010503468
This paper is concerned with problem of variable selection and forecasting in the presence of parameter instability. There are a number of approaches proposed for forecasting in the presence of breaks, including the use of rolling windows or exponential down-weighting. However, these studies...
Persistent link: https://www.econbiz.de/10012258549
One important goal of this study is to develop a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first...
Persistent link: https://www.econbiz.de/10003790570
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10003792846
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10003808637
Persistent link: https://www.econbiz.de/10003711864
This paper generalizes the approach to estimating a first-order spatial autoregressive model with spatial autoregressive disturbances (SARAR(1,1)) in a cross-section with heteroskedastic innovations by Kelejian and Prucha (2008) to the case of spatial autoregressive models with spatial...
Persistent link: https://www.econbiz.de/10003748246
Estimation and inference in the spatial econometrics literature are carried out assuming that the matrix of spatial or network connections has uniformly bounded absolute column sums in the number of cross-section units, n. In this paper, we consider spatial models where this restriction is...
Persistent link: https://www.econbiz.de/10011987935