Showing 1 - 10 of 97
In recent years new methods and models have been developed to quantify credit risk on a portfolio basis. CreditMetrics (tm), CreditRisk+, CreditPortfolio (tm) are among the best known and many others are similar to them. At first glance they are quite different in their approaches and...
Persistent link: https://www.econbiz.de/10010986454
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010958610
Ambivalence in the regulatory definition of capital adequacy for credit risk has recently steered the financial services industry to collateral loan obligations (CLOs) as an important balance sheet management tool. CLOs represent a specialised form of Asset-Backed Securitisation (ABS), with...
Persistent link: https://www.econbiz.de/10010958811
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10005138850
It has been forty years since the oil crisis of 1973/74. This crisis has been one of the defining economic events of the 1970s and has shaped how many economists think about oil price shocks. In recent years, a large literature on the economic determinants of oil price fluctuations has emerged....
Persistent link: https://www.econbiz.de/10011412896
Linear rational-expectations models (LREMs) are conventionally "forwardly" estimated as follows. Structural coefficients are restricted by economic restrictions in terms of deep parameters. For given deep parameters, structural equations are solved for "rational-expectations solution" (RES)...
Persistent link: https://www.econbiz.de/10013471283
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010420345
Although there is much interest in the future retail price of gasoline among consumers, industry analysts, and policymakers, it is widely believed that changes in the price of gasoline are essentially unforecastable given publicly available information. We explore a range of new forecasting...
Persistent link: https://www.econbiz.de/10010464595
Some observers have conjectured that oil supply shocks in the United States and in other countries are behind the plunge in the price of oil since June 2014. Others have suggested that a major shock to oil price expectations occurred when in late November 2014 OPEC announced that it would...
Persistent link: https://www.econbiz.de/10010471535
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010986379