Showing 1 - 10 of 25
We model the dynamics of ask and bid curves in a limit order book market using a dynamic semiparametric factor model. The shape of the curves is captured by a factor structure which is estimated nonparametrically. Corresponding factor loadings are assumed to follow multivariate dynamics and are...
Persistent link: https://www.econbiz.de/10003887437
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008697981
Persistent link: https://www.econbiz.de/10003562219
We study the impact of the arrival of macroeconomic news on the informational and noise-driven components in high-frequency quote processes and their conditional variances. Bid and ask returns are decomposed into a common ("efficient return") factor and two market-side-specific components...
Persistent link: https://www.econbiz.de/10003947458
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders' use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ,...
Persistent link: https://www.econbiz.de/10009504616
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a...
Persistent link: https://www.econbiz.de/10009308302
We propose a multivariate dynamic intensity peaks-over-threshold model to capture extreme events in a multivariate time series of returns. The random occurrence of extreme events exceeding a threshold is modeled by means of a multivariate dynamic intensity model allowing for feedback effects...
Persistent link: https://www.econbiz.de/10011336494
The U.S. Energy Information Administration (EIA) regularly publishes monthly and quarterly forecasts of the price of crude oil for horizons up to two years, which are widely used by practitioners. Traditionally, such out-of-sample forecasts have been largely judgmental, making them difficult to...
Persistent link: https://www.econbiz.de/10010200871
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting...
Persistent link: https://www.econbiz.de/10010201171