Showing 1 - 10 of 50
In this paper we develop a new primal-dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of...
Persistent link: https://www.econbiz.de/10005065359
In this paper, we develop new subgradient methods for solving nonsmooth convex optimization problems. These methods are the first ones, for which the whole sequence of test points is endowed with the worst-case performance guarantees. The new methods are derived from a relaxed estimating...
Persistent link: https://www.econbiz.de/10010927696
In this paper we suggest a new framework for constructing mathematical models of market activity. Contrary to the majority of the classical economical models (e.g. Arrow- Debreu, Walras, etc.), we get a characterization of general equilibrium of the market as a saddle point in a convex-concave...
Persistent link: https://www.econbiz.de/10010752813
In this paper we propose a new interior-point method, which is based on an extension of the ideas of self-scaled optimization to the general cases. We suggest using the primal correction process to find a scaling point. This point is used to compute a strictly feasible primal-dual pair by simple...
Persistent link: https://www.econbiz.de/10005042857
In many applications it is possible to justify a reasonable bound for possible variation of subgradients of objective function rather than for their uniform magnitude. In this paper we develop a new class of efficient primal-dual subgradient schemes for such problem classes.
Persistent link: https://www.econbiz.de/10005043014
In this paper we introduce the notions of characteristic and potential functions of directed graphs and study their properties. The main motivation for our research is the stochastic equilibrium traffic assignment problem, in which the drivers choose their routes with some probabilities. Since...
Persistent link: https://www.econbiz.de/10005043087
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem....
Persistent link: https://www.econbiz.de/10005043237
In this paper we derive effciency estimates of the regularized Newton's method as applied to constrained convex minimization problems and to variational inequalities. We study a one- step Newton's method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3...
Persistent link: https://www.econbiz.de/10005043350
In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a -self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 +...
Persistent link: https://www.econbiz.de/10005043444
In this paper we develop a new and efficient method for variational inequality with Lipschitz continuous strongly monotone operator. Our analysis is based on a new strongly convex merit function. We apply a variant of the developed scheme for solving quasivariational inequality. As a result, we...
Persistent link: https://www.econbiz.de/10005043714