Showing 1 - 6 of 6
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...
Persistent link: https://www.econbiz.de/10010851217
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated by...
Persistent link: https://www.econbiz.de/10008462021
We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory...
Persistent link: https://www.econbiz.de/10005787547
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the...
Persistent link: https://www.econbiz.de/10005440039
We propose to use a variant of the local polynomial Whittle estimator to estimate the memory parameter in volatility for long memory stochastic volatility models with potential nonstation- arity in the volatility process. We show that the estimator is asymptotically normal and capable of...
Persistent link: https://www.econbiz.de/10005440062
This paper extends the local polynomial Whittle estimator of Andrews & Sun (2004) to fractionally integrated processes covering stationary and non-stationary regions. We utilize the notion of the extended discrete Fourier transform and periodogram to extend the local polynomial Whittle estimator...
Persistent link: https://www.econbiz.de/10005440065