Showing 1 - 7 of 7
This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the...
Persistent link: https://www.econbiz.de/10010935035
The GARCH framework has been used for option pricing with quite some success. While the initial work assumed conditional Gaussian innovations, recent contributions relax this assumption and allow for more flexible parametric specifications of the underlying distribution. However, until now the...
Persistent link: https://www.econbiz.de/10009399366
In this paper we propose a feasible way to price American options in a model with time varying volatility and conditional skewness and leptokurtosis using GARCH processes and the Normal Inverse Gaussian distribution. We show how the risk neutral dynamics can be obtained in this model, we...
Persistent link: https://www.econbiz.de/10005787559
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk...
Persistent link: https://www.econbiz.de/10008468123
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a functional coefficient autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized...
Persistent link: https://www.econbiz.de/10005440076
While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order...
Persistent link: https://www.econbiz.de/10005440079
The general theory of prediction-based estimating functions for stochastic process models is reviewed and extended. Particular attention is given to optimal estimation, asymptotic theory and Gaussian processes. Several examples of applications are presented. In particular partial observation of...
Persistent link: https://www.econbiz.de/10008802538