Showing 1 - 7 of 7
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10005440068
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10008784442
This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the...
Persistent link: https://www.econbiz.de/10010935035
In this paper we investigate the effects of careful modelling the long-run dynamics of the volatil- ities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over...
Persistent link: https://www.econbiz.de/10009148811
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a functional coefficient autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized...
Persistent link: https://www.econbiz.de/10005440076
The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989) and...
Persistent link: https://www.econbiz.de/10008577798
The general theory of prediction-based estimating functions for stochastic process models is reviewed and extended. Particular attention is given to optimal estimation, asymptotic theory and Gaussian processes. Several examples of applications are presented. In particular partial observation of...
Persistent link: https://www.econbiz.de/10008802538