Showing 1 - 8 of 8
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10005440068
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10008784442
This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the...
Persistent link: https://www.econbiz.de/10010935035
This paper examines trends in annual temperature data for the northern and southern hemisphere (1850-2010) by using variants of the shifting-mean autoregressive (SM-AR) model of González and Teräsvirta (2008). Univariate models are first fitted to each series by using the so called QuickShift...
Persistent link: https://www.econbiz.de/10010851222
We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength of...
Persistent link: https://www.econbiz.de/10008472104
Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to...
Persistent link: https://www.econbiz.de/10008525441
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a functional coefficient autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized...
Persistent link: https://www.econbiz.de/10005440076
The general theory of prediction-based estimating functions for stochastic process models is reviewed and extended. Particular attention is given to optimal estimation, asymptotic theory and Gaussian processes. Several examples of applications are presented. In particular partial observation of...
Persistent link: https://www.econbiz.de/10008802538