Showing 1 - 10 of 11
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...
Persistent link: https://www.econbiz.de/10010851217
We consider the nonstationary fractional model $\Delta^{d}X_{t}=\varepsilon _{t}$ with $\varepsilon_{t}$ i.i.d.$(0,\sigma^{2})$ and $d1/2$. We derive an analytical expression for the main term of the asymptotic bias of the maximum likelihood estimator of $d$ conditional on initial values, and we...
Persistent link: https://www.econbiz.de/10010851220
Fractionally integrated processes have become a standard class of models to describe the long memory features of economic and financial time series data. However, it has been demonstrated in numerous studies that structural break processes and non-linear features can often be confused as being...
Persistent link: https://www.econbiz.de/10010851300
Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests that the efficient market hypothesis, stating that spot and futures prices of a commodity should cointegrate with a unit slope on futures prices, does not hold. However, these statistical methods are...
Persistent link: https://www.econbiz.de/10010886799
This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the...
Persistent link: https://www.econbiz.de/10010935035
The dynamic dependencies in financial market volatility are generally well described by a long-memory fractionally integrated process. At the same time, the volatility risk premium, defined as the difference between the ex-post realized volatility and the market’s ex-ante expectation thereof,...
Persistent link: https://www.econbiz.de/10009399368
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated by...
Persistent link: https://www.econbiz.de/10008462021
In this paper, we propose new tests for long memory in stationary and nonstationary time series possibly perturbed by short-run noise which may be serially correlated. The tests are all based on semiparametric estimators and exploit the self-similarity property of long memory processes. We o¤er...
Persistent link: https://www.econbiz.de/10005440038
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the...
Persistent link: https://www.econbiz.de/10005440039
This paper extends the local polynomial Whittle estimator of Andrews & Sun (2004) to fractionally integrated processes covering stationary and non-stationary regions. We utilize the notion of the extended discrete Fourier transform and periodogram to extend the local polynomial Whittle estimator...
Persistent link: https://www.econbiz.de/10005440065