Showing 1 - 10 of 88
Motivated by the construction of the Itô stochastic integral, we consider a step function method to discretize and simulate volatility modulated Lévy semistationary processes. Moreover, we assess the accuracy of the method with a particular focus on integrating kernels with a singularity at...
Persistent link: https://www.econbiz.de/10010885056
In this paper we analyze the limiting properties of the estimated parameters in a general class of asymmetric volatility models which are closely related to the traditional exponential GARCH model. The new representation has three main advantages over the traditional EGARCH: (1) It allows a much...
Persistent link: https://www.econbiz.de/10005198863
I comment on the controversy between McCloskey & Ziliak and Hoover & Siegler on statistical versus economic significance, in the March 2008 issue of the Journal of Economic Methodology. I argue that while McCloskey & Ziliak are right in emphasizing ’real error’, i.e. non-sampling error that...
Persistent link: https://www.econbiz.de/10004961428
This paper evaluates the accuracy of a set of techniques that approximate the solution of continuous-time DSGE models. Using the neoclassical growth model I compare linear-quadratic, perturbation and projection methods. All techniques are applied to the HJB equation and the optimality conditions...
Persistent link: https://www.econbiz.de/10010851250
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels,...
Persistent link: https://www.econbiz.de/10010851278
This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the...
Persistent link: https://www.econbiz.de/10010851287
This paper details Particle Markov chain Monte Carlo techniques for analysis of unobserved component time series models using several economic data sets. PMCMC combines the particle filter with the Metropolis-Hastings algorithm. Overall PMCMC provides a very compelling, computationally fast and...
Persistent link: https://www.econbiz.de/10010851295
We address the issue of modelling and forecasting macroeconomic variables using medium and large datasets, by adopting VARMA models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (IOLS) estimator. We establish the...
Persistent link: https://www.econbiz.de/10010940885
We present and evaluate a numerical optimization method (together with an algorithm for choosing the starting values) pertinent to the constrained optimization problem arising in the estimation of the GARCH models with inequality constraints, in particular the Simplified Component GARCH Model...
Persistent link: https://www.econbiz.de/10009421016
The aim of this work is to provide fast and accurate approximation schemes for the Monte Carlo pricing of derivatives in LIBOR market models. Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods are generally slow. Our...
Persistent link: https://www.econbiz.de/10008462032