Showing 1 - 10 of 249
We propose a simulated maximum likelihood estimator for dynamic models based on non-parametric kernel methods. Our method is designed for models without latent dynamics from which one can simulate observations but cannot obtain a closed-form representation of the likelihood function. Using the...
Persistent link: https://www.econbiz.de/10005114113
We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Computation which build likelihoods based on limited information. The proposed estimators and filters are computationally attractive relative...
Persistent link: https://www.econbiz.de/10010892068
We propose a parametric state space model with accompanying estimation and forecasting framework that combines long memory and level shifts by decomposing the underlying process into a simple mixture model and ARFIMA dynamics. The Kalman filter is used to construct the likelihood function after...
Persistent link: https://www.econbiz.de/10009150791
We analyze the properties of the indirect inference estimator when the observed series are contaminated by measurement error. We show that the indirect inference estimates are asymptotically biased when the nuisance parameters of the measurement error distribution are neglected in the indirect...
Persistent link: https://www.econbiz.de/10011106767
In this paper we analyze the limiting properties of the estimated parameters in a general class of asymmetric volatility models which are closely related to the traditional exponential GARCH model. The new representation has three main advantages over the traditional EGARCH: (1) It allows a much...
Persistent link: https://www.econbiz.de/10005198863
We propose two new jump-robust estimators of integrated variance based on highfrequency return observations. These MinRV and MedRV estimators provide an attractive alternative to the prevailing bipower and multipower variation measures. Specifically, the MedRV estimator has better theoretical...
Persistent link: https://www.econbiz.de/10008472103
We provide a first in-depth look at robust estimation of integrated quarticity (IQ) based on high frequency data. IQ is the key ingredient enabling inference about volatility and the presence of jumps in financial time series and is thus of considerable interest in applications. We document the...
Persistent link: https://www.econbiz.de/10009148814
This paper establishes uniform consistency results for nonparametric kernel density and regression estimators when time series regressors concerned are nonstationary null recurrent Markov chains. Under suitable regularity conditions, we derive uniform convergence rates of the estimators. Our...
Persistent link: https://www.econbiz.de/10010851296
Novel transition-based misspeci?cation tests of semiparametric and fully parametric univariate diffusion models based on the estimators developed in Kristensen (Journal of Econometrics, 2010) are proposed. It is demonstrated that transition-based tests in general lack power in detecting local...
Persistent link: https://www.econbiz.de/10008462024
A novel estimation method for two classes of semiparametric scalar diffusion models is proposed: In the first class, the diffusion term is parameterised and the drift is left unspecified, while in the second class only the drift term is specified. Under the assumption of stationarity, the...
Persistent link: https://www.econbiz.de/10008527073