Showing 1 - 10 of 52
We propose methods for inference on the average effect of a treatment on a scalar outcome in the presence of very many controls. Our setting is a partially linear regression model containing the treatment/policy variable and a large number p of controls or series terms, with p that is possibly...
Persistent link: https://www.econbiz.de/10009416811
<p>This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...</p>
Persistent link: https://www.econbiz.de/10009416812
<p><p>We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic...</p></p>
Persistent link: https://www.econbiz.de/10008694043
In this article, we review quantile models with endogeneity. We focus on models that achieve indentification through the use of instrumental variables and discuss conditions under which partial and point identification are obtained. We discuss key conditions, which include monotonicity and...
Persistent link: https://www.econbiz.de/10010663600
We consider estimation of policy relevant treatment effects in a data-rich environment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endeogenous...
Persistent link: https://www.econbiz.de/10010712644
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010827524
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010827534
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010827563
<p>Instrumental variables are often associated with low estimator precision. This paper explores efficiency gains which might be achievable using moment conditions which are nonlinear in the disturbances and are based on flexible parametric families for error distributions. We show that these...</p>
Persistent link: https://www.econbiz.de/10005727686
Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is...
Persistent link: https://www.econbiz.de/10005547933