Showing 1 - 10 of 25
For semi/nonparametric conditional moment models containing unknown parametric components θ and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This...
Persistent link: https://www.econbiz.de/10005727653
<p><p>This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear...</p></p>
Persistent link: https://www.econbiz.de/10005727674
<p><p>This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (Θ) and unknown functions (h)of endogenous variables. We show that: (1) the penalized sieve minimum distance(PSMD) estimator (ˆΘ, ˆh) can...</p></p>
Persistent link: https://www.econbiz.de/10005037565
This paper considers the nonparametric and semiparametric methods for estimating regression models with continuous endogenous regressors. We list a number of different generalizations of the linear structural equation model, and discuss how two common estimation approaches for linear...
Persistent link: https://www.econbiz.de/10005727667
This paper develops and implements semiparametric methods for estimating binary response (binary choice) models withcontinuous endogenous regressors. It extends the existing literature on semiparametric estimation in single index binary response models to the case of endogenous regressors. It...
Persistent link: https://www.econbiz.de/10005727681
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009651940
In this selective review, we first provide some empirical examples that motivate the usefulness of semi-nonparametric techniques in modelling economic and financial time series. We describe popular classes of semi-nonparametric dynamic models and some temporal dependence properties. We then...
Persistent link: https://www.econbiz.de/10009210904
The goal of this paper is to develop techniques to simplify semiparametric inference. We do this by deriving a number of numerical equivalence results. These illustrate that in many cases, one can obtain estimates of semiparametric variances using standard formulas derived in the...
Persistent link: https://www.econbiz.de/10009210906
In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that there are corresponding sufficient conditions for nonparametric models. A nonparametric rank...
Persistent link: https://www.econbiz.de/10009643604
This paper computes the semiparametric efficiency bound for finite dimensional parameters identified by models of sequential moment restrictions containing unknown functions. Our results extend those of Chamberlain (1992b) and Ai and Chen (2003) for semiparametric conditional moment restriction...
Persistent link: https://www.econbiz.de/10008631353