Showing 1 - 3 of 3
This paper studies a new class of robust regression estimators based on the two-step least weighted squares (2S-LWS) estimator which employs data-adaptive weights determined from the empirical distribution or quantile functions of regression residuals obtained from an initial robust fit. Just...
Persistent link: https://www.econbiz.de/10012728487
The three-step generalized methods of moments (GMM) approach of Kapoor, Kelejian and Prucha (2007), which corrects for spatially correlated errors in static panel data models, is extended by introducing fixed effects, a spatial lag, and a one-period lag of the dependent variable as additional...
Persistent link: https://www.econbiz.de/10014175015
High breakdown-point regression estimators protect against large errors and data contamination. We generalize the concept of trimming used by many of these robust estimators, such as the least trimmed squares and maximum trimmed likelihood, and propose a general trimmed estimator, which renders...
Persistent link: https://www.econbiz.de/10014066759