Showing 1 - 10 of 22
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Persistent link: https://www.econbiz.de/10009627285
Persistent link: https://www.econbiz.de/10009581094
Persistent link: https://www.econbiz.de/10009613610
Persistent link: https://www.econbiz.de/10001646219
The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10009627273
Persistent link: https://www.econbiz.de/10009611558
Persistent link: https://www.econbiz.de/10001743569
Persistent link: https://www.econbiz.de/10001918932
An important and widely used class of semiparametric models is formed by the varying-coefficient models. Although the varying coefficients are traditionally assumed to be smooth functions, the varying-coefficient model is considered here with the coefficient functions containing a finite set of...
Persistent link: https://www.econbiz.de/10012960538