Showing 1 - 9 of 9
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Persistent link: https://www.econbiz.de/10009627285
Persistent link: https://www.econbiz.de/10009613610
Persistent link: https://www.econbiz.de/10009611558
Persistent link: https://www.econbiz.de/10001918932
The panel-data regression models are frequently applied to micro-level data, which often suffer from data contamination, erroneous observations, or unobserved heterogeneity. Despite the adverse effects of outliers on classical estimation methods, there are only a few robust estimation methods...
Persistent link: https://www.econbiz.de/10013136876
This paper introduces a new class of robust regression estimators. The proposed twostep least weighted squares (2S-LWS) estimator employs data-adaptive weights determined from the empirical distribution, quantile, or density functions of regression residuals obtained from an initial robust fit....
Persistent link: https://www.econbiz.de/10012731904
High breakdown-point regression estimators protect against large errors and data contamination. We adapt and generalize the concept of trimming used by many of these robust estimators so that it can be employed in the context of the generalized method of moments. The proposed generalized method...
Persistent link: https://www.econbiz.de/10012718043
This paper extends an existing outlier-robust estimator of linear dynamic panel data models with fixed effects, which is based on the median ratio of two consecutive pairs of first-differenced data. To improve its precision and robust properties, a general procedure based on many pairwise...
Persistent link: https://www.econbiz.de/10013029938