Showing 1 - 10 of 34
Adjustable Robust Optimization (ARO) yields, in general, better worst-case solutions than static Robust Optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we derive conditions under which the worst-case objective values of ARO and RO problems are equal. We...
Persistent link: https://www.econbiz.de/10013014822
In this paper we propose a methodology for constructing decision rules for integer and continuous decision variables in multiperiod robust linear optimization problems. This type of problems finds application in, for example, inventory management, lot sizing, and manpower management. We show...
Persistent link: https://www.econbiz.de/10013005868
Robust optimization is a methodology that can be applied to problems that are affected by uncertainty in the problem's parameters. The classical robust counterpart (RC) of the problem requires the solution to be feasible for all uncertain parameter values in a so-called uncertainty set, and...
Persistent link: https://www.econbiz.de/10013021071
In optimization problems appearing in fields such as economics, finance, or engineering, it is often important that a risk measure of a decision-dependent random variable stays below a prescribed level. At the same time, the underlying probability distribution determining the risk measure's...
Persistent link: https://www.econbiz.de/10013033612
The Pareto set of a multiobjective optimization problem consists of the solutions for which one or more objectives can not be improved without deteriorating one or more other objectives. We consider problems with linear objectives and linear constraints and use Adjustable Robust optimization and...
Persistent link: https://www.econbiz.de/10014170712
This paper addresses the robust counterparts of optimization problems containing sums of maxima of linear functions and proposes several reformulations. These problems include many practical problems, e.g. problems with sums of absolute values, and arise when taking the robust counterpart of a...
Persistent link: https://www.econbiz.de/10014176197
This article presents a novel combination of robust optimization developed in mathematical programming, and robust parameter design developed in statistical quality control. Robust parameter design uses metamodels estimated from experiments with both controllable and environmental inputs...
Persistent link: https://www.econbiz.de/10014159513
In this paper we consider ambiguous stochastic constraints under partial information consisting of means and dispersion measures of the underlying random parameters. Whereas the past literature used the variance as the dispersion measure, here we use the mean absolute deviation from the mean...
Persistent link: https://www.econbiz.de/10014135273
Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often...
Persistent link: https://www.econbiz.de/10014150072
In this paper we provide a systematic way to construct the robust counterpart of a nonlinear uncertain inequality that is concave in the uncertain parameters. We use convex analysis (support functions, conjugate functions, Fenchel duality) and conic duality in order to convert the robust...
Persistent link: https://www.econbiz.de/10014168235