Showing 1 - 10 of 265
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often...
Persistent link: https://www.econbiz.de/10014150072
Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with...
Persistent link: https://www.econbiz.de/10014166285
In this paper we investigate global optimization for black-box simulations using metamodels to guide this optimization. As a novel metamodel we introduce intrinsic Kriging, for either deterministic or random simulation. For deterministic simulation we study the famous 'e fficient global...
Persistent link: https://www.econbiz.de/10014141513
This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input...
Persistent link: https://www.econbiz.de/10012956205
An important goal of simulation is optimization of the corresponding real system. We focus on simulation models with multiple responses (out-puts), selecting one response as the variable to be maximized or minimized while the remaining responses satisfy prespecified thresholds; i.e., we focus on...
Persistent link: https://www.econbiz.de/10013321790
Kriging is a popular method for estimating the global optimum of a simulated system. Kriging approximates the input/output function of the simulation model. Kriging also estimates the variances of the predictions of outputs for input combinations not yet simulated. These predictions and their...
Persistent link: https://www.econbiz.de/10014038647
We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is...
Persistent link: https://www.econbiz.de/10014138835
This paper addresses the robust counterparts of optimization problems containing sums of maxima of linear functions and proposes several reformulations. These problems include many practical problems, e.g. problems with sums of absolute values, and arise when taking the robust counterpart of a...
Persistent link: https://www.econbiz.de/10014176197
In many fields, we come across problems where we want to optimize several conflicting objectives simultaneously. To find a good solution for such multi-objective optimization problems, an approximation of the Pareto set is often generated. In this paper, we consider the approximation of Pareto...
Persistent link: https://www.econbiz.de/10014046411