Showing 1 - 10 of 265
Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often...
Persistent link: https://www.econbiz.de/10014150072
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
An important goal of simulation is optimization of the corresponding real system. We focus on simulation models with multiple responses (out-puts), selecting one response as the variable to be maximized or minimized while the remaining responses satisfy prespecified thresholds; i.e., we focus on...
Persistent link: https://www.econbiz.de/10013321790
This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input...
Persistent link: https://www.econbiz.de/10012956205
Kriging is a popular method for estimating the global optimum of a simulated system. Kriging approximates the input/output function of the simulation model. Kriging also estimates the variances of the predictions of outputs for input combinations not yet simulated. These predictions and their...
Persistent link: https://www.econbiz.de/10014038647
In this paper we investigate global optimization for black-box simulations using metamodels to guide this optimization. As a novel metamodel we introduce intrinsic Kriging, for either deterministic or random simulation. For deterministic simulation we study the famous 'e fficient global...
Persistent link: https://www.econbiz.de/10014141513
Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with...
Persistent link: https://www.econbiz.de/10014166285
We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is...
Persistent link: https://www.econbiz.de/10014138835
In many fields, we come across problems where we want to optimize several conflicting objectives simultaneously. To find a good solution for such multi-objective optimization problems, an approximation of the Pareto set is often generated. In this paper, we consider the approximation of Pareto...
Persistent link: https://www.econbiz.de/10014046411
In this paper we study the existence problem of a zero point of a function defined on a finite set of elements of the integer lattice Zn of the n-dimensional Euclidean space IRn. It is assumed that the set is integrally convex, which implies that the convex hull of the set can be subdivided in...
Persistent link: https://www.econbiz.de/10012722331