Showing 1 - 10 of 13
We consider temporal aggregation of stationary and nonstationary time series with short memory, long memory and antipersistence, within the framework of fractional autoregressive processes. Asymptotically, long memory and antipersistence are preserved whereas short memory components vanish. In...
Persistent link: https://www.econbiz.de/10010324023
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10010324024
Time series in many areas of application often display local or global trends. Typical models that provide statistical explanations of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for...
Persistent link: https://www.econbiz.de/10010324046
This paper puts focus on the hazard function of inter-trade durations to characterize the intraday trading process. It sheds light on the time varying trade intensity and, thus, on the liquidity of an asset and the informations channels which propagate price signals among asymmetrically informed...
Persistent link: https://www.econbiz.de/10010324058
When making decisions, agents tend to make use of decisions others have made in similar situations. Ignoring this behavior in empirical models can be interpreted as a problem of omitted variables and may seriously bias parameter estimates and harm inference. We suggest a possibility of...
Persistent link: https://www.econbiz.de/10010324073
The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation distribution. Empirical methods are based on the sample forecast errors. In this...
Persistent link: https://www.econbiz.de/10010324076
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077
SEMIFAR models introduced in Beran (1999) provide a semiparametric modelling framework that enables the data analyst to separate deterministic and stochastic trends as well as short- and long-memory components in an observed time series. A correct distinction between these components, and in...
Persistent link: https://www.econbiz.de/10010324082
This paper is written as a supplement to our paper Iterative plug-in algorithms for SEMIFAR models-definition, convergence and asymptotic properties (Beran and Feng, 2001). The purpose of this supplement is to report the detailed simulation results, because it is impossible to include all of...
Persistent link: https://www.econbiz.de/10010324086
The recent availability of large data sets covering single transactions on financial markets has created a new branch of econometrics which has opened up a new door of looking at the microstructure of financial markets and its dynamics. The specific nature of transaction data such as the...
Persistent link: https://www.econbiz.de/10010324091