Showing 1 - 10 of 46
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010324063
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010324084
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10005357905
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10005146755
We consider temporal aggregation of stationary and nonstationary time series with short memory, long memory and antipersistence, within the framework of fractional autoregressive processes. Asymptotically, long memory and antipersistence are preserved whereas short memory components vanish. In...
Persistent link: https://www.econbiz.de/10010324023
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10010324024
By applying SEMIFAR models (Beran, 1999), we examine 'long memory' in the volatility of worldwide stock market indices. Our analysis yields strong evidence of 'long memory' in stock market volatility, either in terms of stochastic long-range dependence or in form of deterministic trends. In some...
Persistent link: https://www.econbiz.de/10010324030
Time series in many areas of application often display local or global trends. Typical models that provide statistical explanations of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for...
Persistent link: https://www.econbiz.de/10010324046
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10010324055
Confidence intervals and tests for the location parameter are considered for time series generated by FEXP models. Since these tests mainly depend on the unknown fractional differencing parameter d, the distribution of d plays a major role. An exact closed form expression for the asymptotic...
Persistent link: https://www.econbiz.de/10010324056