Showing 1 - 10 of 15
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap...
Persistent link: https://www.econbiz.de/10005464054
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et. al. (2001), Martens et al. (2004)). The present paper provides some analytical explanations for this evidence and shows...
Persistent link: https://www.econbiz.de/10005593334
In a panel data model with fixed effects, possible cross-sectional dependence is investigated in a spatial autoregressive setting. An Edgeworth expansion is developed for the maximum likelihood estimate of the spatial correlation coefficient. The expansion is used to develop more accurate...
Persistent link: https://www.econbiz.de/10011268329
It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k = 1, higher-order asymptotic...
Persistent link: https://www.econbiz.de/10004990703
This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements...
Persistent link: https://www.econbiz.de/10005093948
The asymptotic refinements attributable to the block bootstrap for time series are not as large as those of the nonparametric iid bootstrap or the parametric bootstrap. One reason is that the independence between the blocks in the block bootstrap sample does not mimic the dependence structure of...
Persistent link: https://www.econbiz.de/10005593249
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood....
Persistent link: https://www.econbiz.de/10005593469
This paper establishes the higher-order equivalence of the k-step bootstrap, introduced recently by Davidson and MacKinnon (1999a), and the standard bootstrap. The k-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear...
Persistent link: https://www.econbiz.de/10005593591
In this paper, we prove the validity of an Edgeworth expansion to the distribution of the Whittle maximum likelihood estimator for stationary long-memory Gaussian models with unknown parameter theta in Theta subset R^{d_{theta}} . The error of the (s-2)-order expansion is shown to be...
Persistent link: https://www.econbiz.de/10005593482
The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However in moderate samples the normal approximation may not be...
Persistent link: https://www.econbiz.de/10010745104