Showing 1 - 10 of 138
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood....
Persistent link: https://www.econbiz.de/10005593469
We propose a procedure for estimating the critical values of the Klecan, McFadden, and McFadden (1990) test for first and second order stochastic dominance in the general k-prospect case. Our method is based on subsampling bootstrap. We show that the resulting test is consistent. We allow for...
Persistent link: https://www.econbiz.de/10005593569
We propose non-nested tests for competing conditional moment resctriction models using a method of empirical likelihood. Our tests are based on the method of conditional empirical likelihood developed by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003). By using the conditional...
Persistent link: https://www.econbiz.de/10005087379
Baggerly (1998) showed that empirical likelihood is the only member in the Cressie-Read power divergence family to be Bartlett correctable. This paper strengthens Baggerly's result by showing that in a generalized class of the power divergence family, which includes the Cressie-Read family...
Persistent link: https://www.econbiz.de/10009324077
In this paper we make two contributions. First, we show by example that empirical likelihood and other commonly used tests for parametric moment restrictions, including the GMM-based J-test of Hansen (1982), are unable to control the rate at which the probability of a Type I error tends to zero....
Persistent link: https://www.econbiz.de/10005068263
We propose non-nested hypotheses tests for conditional moment restriction models based on the method of generalized empirical likelihood (GEL). By utilizing the implied GEL probabilities from a sequence of unconditional moment restrictions that contains equivalent information of the conditional...
Persistent link: https://www.econbiz.de/10005464018
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes...
Persistent link: https://www.econbiz.de/10008917778
This paper studies second-order properties of the empirical likelihood overidentifying restriction test to check the validity of moment condition models. We show that the empirical likelihood test is Bartlett correctable and suggest second-order refinement methods for the test based on the...
Persistent link: https://www.econbiz.de/10008925608
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10009019983
This paper considers regression models for cross-section data that exhibit cross-section dependence due to common shocks, such as macroeconomic shocks. The paper analyzes the properties of least squares (LS) and instrumental variables (IV) estimators in this context. The results of the paper...
Persistent link: https://www.econbiz.de/10005762510