Showing 1 - 10 of 114
This paper establishes the asymptotic normality of series estimators for nonparametric regression models. Gallant's Fourier flexible form estimators, trigonometric series estimators, and polynomial series estimators are prime examples of the estimators covered by the results. The results apply...
Persistent link: https://www.econbiz.de/10005762851
We provide a new asymptotic theory for local time density estimation for a general class of functionals of integrated time series. This result provides a convenient basis for developing an asymptotic theory for nonparametric cointegrating regression and autoregression. Our treatment directly...
Persistent link: https://www.econbiz.de/10005464027
A local limit theorem is given for the sample mean of a zero energy function of a nonstationary time series involving twin numerical sequences that pass to infinity. The result is applicable in certain nonparametric kernel density estimation and regression problems where the relevant quantities...
Persistent link: https://www.econbiz.de/10005593277
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is...
Persistent link: https://www.econbiz.de/10005593511
This paper derives the asymptotic distribution of a smoothing-based estimator of the Lyapunov exponent for a stochastic time series under two general scenarios. In the first case, we are able to establish root-T consistency and asymptotic normality, while in the second case, which is more...
Persistent link: https://www.econbiz.de/10005593525
This paper studies nonlinear cointegration models in which the structural coefficients may evolve smoothly over time. These time-varying coefficient functions are well-suited to many practical applications and can be estimated conveniently by nonparametric kernel methods. It is shown that the...
Persistent link: https://www.econbiz.de/10010895635
We develop a general class of nonparametric tests for treatment effects conditional on covariates. We consider a wide spectrum of null and alternative hypotheses regarding conditional treatment effects, including (i) the null hypothesis of the conditional stochastic dominance between treatment...
Persistent link: https://www.econbiz.de/10008496364
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes...
Persistent link: https://www.econbiz.de/10008917778
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10009019983
This paper studies estimation and specification testing in threshold regression with endogeneity. Three key results differ from those in regular models. First, both the threshold point and the threshold effect parameters are shown to be identified without the need for instrumentation. Second, in...
Persistent link: https://www.econbiz.de/10011096433