Showing 1 - 5 of 5
The parameters in duration models are usually estimated by a Quasi Maximum Likelihood Estimator [QMLE]. This estimator is efficient if the errors are iid and exponentially distributed. Otherwise, it may not be the most efficient. Motivated by this, a class of estimators has been introduced by...
Persistent link: https://www.econbiz.de/10005149120
This paper proposes a semiparametric method for estimating duration models when there are inequality constraints on some parameters and the error distribution may be unknown. Thus, the setting considered here is particularly suitable for practical applications. The parameters in duration models...
Persistent link: https://www.econbiz.de/10005581147
A semiparametric method is studied for estimating the dependence parameter and the joint distribution of the error term in a class of multivariate time series models when the marginal distributions of the errors are unknown. This method is a natural extension of Genest et al. (1995a) for...
Persistent link: https://www.econbiz.de/10005149050
This paper investigates nonparametric estimation of density on [0,1]. The kernel estimator of density on [0,1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study,...
Persistent link: https://www.econbiz.de/10009650286
A semiparametric method is developed for estimating the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them by...
Persistent link: https://www.econbiz.de/10005125276