Showing 1 - 10 of 10
Multi-step forecasts can be produced recursively by iterating a one-step model, or directly using a specific model for each horizon. Choosing between these two strategies is not an easy task since it involves a trade-off between bias and estimation variance over the forecast horizon. Using a...
Persistent link: https://www.econbiz.de/10010958944
We propose a new generic method ROPES (Regularized Optimization for Prediction and Estimation with Sparse data) for decomposing, smoothing and forecasting two-dimensional sparse data. In some ways, ROPES is similar to Ridge Regression, the LASSO, Principal Component Analysis (PCA) and...
Persistent link: https://www.econbiz.de/10010958945
We show how cubic smoothing splines fitted to univariate time series data can be used to obtain local linear forecasts. Our approach is based on a stochastic state space model which allows the use of a likelihood approach for estimating the smoothing parameter, and which enables easy...
Persistent link: https://www.econbiz.de/10005087585
We compare the short- to medium-term accuracy of five variants or extensions of the Lee-Carter method for mortality forecasting. These include the original Lee-Carter, the Lee-Miller and Booth-Maindonald-Smith variants, and the more flexible Hyndman-Ullah and De Jong-Tickle extensions. These...
Persistent link: https://www.econbiz.de/10005087612
The disparity in breast cancer mortality rates among white and black US women is widening with higher mortality rates among black women. We apply functional time series models on age-specific breast cancer mortality rates for each group of women, and forecast their mortality curves using...
Persistent link: https://www.econbiz.de/10008467330
Using the age- and sex-specific data of 14 developed countries, we compare the short- to medium-term accuracy of ten principal component methods for forecasting mortality rates and life expectancy. These ten methods include the Lee-Carter method and many of its variants and extensions. For...
Persistent link: https://www.econbiz.de/10008475767
We present a nonparametric method to forecast a seasonal univariate time series, and propose four dynamic updating methods to improve point forecast accuracy. Our methods consider a seasonal univariate time series as a functional time series. We propose first to reduce the dimensionality by...
Persistent link: https://www.econbiz.de/10004998471
Long-term electricity demand forecasting plays an important role in planning for future generation facilities and transmission augmentation. In a long term context, planners must adopt a probabilistic view of potential peak demand levels, therefore density forecasts (providing estimates of the...
Persistent link: https://www.econbiz.de/10005581135
When independence is assumed, forecasts of mortality for subpopulations are almost always divergent in the long term. We propose a method for non-divergent or coherent forecasting of mortality rates for two or more subpopulations, based on functional principal components models of simple and...
Persistent link: https://www.econbiz.de/10008838043
Age-sex-specific population forecasts are derived through stochastic population renewal using forecasts of mortality, fertility and net migration. Functional data models with time series coefficients are used to model age-specific mortality and fertility rates. As detailed migration data are...
Persistent link: https://www.econbiz.de/10005427608