Showing 1 - 5 of 5
The authors replicate and extend the Monte Carlo experiment presented in Doz et al. (2012) on alternative (time-domain based) methods for extracting dynamic factors from large datasets; they employ open source software and consider a larger number of replications and a wider set of scenarios....
Persistent link: https://www.econbiz.de/10012174691
In this paper, the authors comment on the Monte Carlo results of the paper by Lucchetti and Veneti (A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics), 2020)) that studies and compares the performance of the...
Persistent link: https://www.econbiz.de/10012211628
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the german economy. One model extracts factors by static principals components analysis, the other is based on dynamic principal components obtained using frequency...
Persistent link: https://www.econbiz.de/10005083131
We look at how large international datasets can improve forecasts of national activity. We use the case of New Zealand, an archetypal small open economy. We apply "data-rich" factor and shrinkage methods to tackle the problem of efficiently handling hundreds of predictor data series from many...
Persistent link: https://www.econbiz.de/10005083140
This paper discusses a factor model for estimating monthly GDP using a large number of monthly and quarterly time series in real-time. To take into account the different periodicities of the data and missing observations at the end of the sample, the factors are estimated by applying an EM...
Persistent link: https://www.econbiz.de/10005083178